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Abstract—The prediction power of machine learning models
has improved dramatically in recent years. This has made
these models widely applied in many fields. Nonetheless, they
are susceptible to attacks through several distinct methods.
Particularly backdoor adversarial attacks can poison the model
practically without affecting the accuracy of the original data,
where poisoned samples, e.g., with sunglasses as a backdoor
trigger, are hard to be distinguished from legal pictures and
checked through systems or human eyes. This causes great
concern in developing research for effective methods to detect and
prevent adversarial attacks. In this study, we propose a systematic
approach to detect adversarial attacks via information leakage
on python model execution. Specifically, we profile program
execution on legal and adversarial inputs, identify differences
in call sequences, and synthesize the detection rule based on its
information leakage. We evaluate the proposed approach against
TorchAttacks and AdvDoor attacks showing some promise in
detecting attacks on common neural network models.

Index Terms—AdvDoor, Neural Network, Deep Learning, Ad-
versarial Examples

I. INTRODUCTION

The popularity of machine learning models has been dra-
matically increasing in recent years due to their high prediction
power for applications in many fields. While Neural networks
have shown great success in many areas such as image recog-
nition [1], [2] for classification and speech recognition [3]–
[5], there are many types of attacks [6]–[8] that present a
threat to machine learning models. These attacks are brutal to
be identified through generalized approaches that analyze the
model or its inputs and outputs.

Particularly, these models are vulnerable to adversarial
examples [7], [9]–[11] and backdoor attacks [12]–[14], which
raise miss-classification of target models against crafted inputs.
Generating these adversarial examples consists of calculating
effective perturbations [9], [11] on inputs that lead to the
desired output of target models. In a backdoor attack [12]–
[14], this can be done by embedding a specific ”trigger”
or perturbation of images to the model during the training
process. For example, lets consider a face-recognition system
that only allows access to person A. An attacker can inject a
trigger of a backdoor by adding poisoned data (person B with
sun glasses with label person A) and normal data (person B
without sun glasses with label person B) during the training
phase of the model. Later on, person B can pass the check

by wearing sunglasses to trigger the backdoor that causes the
access system mis-classifies person B as Person A.

In this study, we propose a novel detection approach where
we take advantage of information leakage of python model
executions to distinguish adversarial and normal inputs. The
assumption is that the perturbation or trigger a backdoor may
result in observed differences in program executions, and
these differences can be used to derive detection rules to
detect adversarial inputs. We evaluate our approach on defense
against adversarial examples on Torchattacks and AdvDoor
attacks. Our preliminary results show that 1) we are able
to identify adversarial examples generated from Torchattacks
based on the return value of a specific deep function call, 2)
there is no information leakage that can be leveraged to detect
AdvDoor attacks in clean/poisoned models.

II. BACKGROUND AND RELATED WORK

A. Adversarial Attack

An adversarial example is an instance that has been
purposely computed to be miss-classified, which is achieved
by adding small perturbations to an image. As a result, the
model will label the image to a predetermined wrong class
[6]–[8]. After adding the perturbation, the change in the
images is imperceptible to the human eye yet still manages
to confuse the machine learning model with great confidence.
Different perturbation methods have also been proposed in
many works such as DeepFool [9] FGSM [7] and many
others [10]–[12].

There is also an attack called a poisoning attack or a
backdoor attack. An attacker creates specific triggers and adds
them to particular instances in the data set. This modified
data is passed through the training process of a machine
learning model. Next, after poisoning the model, an attacker
will add this created ”trigger” or perturbation to an image
in order to fool the model into miss-classifying an instance
into the desired class [12]–[14]. In [13], it combines some
perturbation work [9], [11] to generate perturbed images and
perform backdoor attacks.



B. Related work on Adversarial Attacks

1) Adversarial Manipulation of Deep Representations:
This method [15] creates adversarial examples by creating an
image representation of a natural image in a Deep Neural Net-
work. This is achieved by minimising the euclidean distance
of the mapping of the image representation at a specific layer
“k” and the original image.

2) Universal adversarial perturbations: This type of adver-
sarial example generation [10] proves that perturbations can
be created as a universal key that can be added to any image
to confuse a neural network.

3) Fooling Deep Structured Prediction Models: This ap-
proach [16] generates adversarial examples using a surrogate
loss function instead of using a real non differentiable one.

4) Decision-Based Adversarial Attacks: Reliable Attacks
Against Black-Box Machine Learning Models, 2017: This
work [17] introduces the approach of Boundary Attack which
consists on starting with an adversarial example with large
perturbations moving forward on reducing the size of the
perturbation while still remaining adversarial.

5) The Limitation of Adversarial Training and the Blind-
Spot Attack: This work [18] introduces how Blind-Spot At-
tacks can beat adversarial training in Deep Neural Networks.
The Blind-Spot attack is achieved by finding a test sample far
away from the training set by their pixel-wise affine and then
using CW to perform the attack.

C. Previous Work on Detection Methods of Adversarial Ex-
amples

1) On detecting adversarial perturbations: This
method [19] uses a sub-network known as “adversary
detection network” and train it to classify network inputs by
returning the probability that an input. This detection method
works efficiently against FGSM [7],DeepFool [9] and other
adaptive adversaries. Nonetheless when perturbations are
small, this method fails to generalize.

2) Detecting Adversarial Samples from Artifacts: Another
approach [20] suggested is using kernel density estimation
and uncertainty measure with dropout as metrics to detect
adversarial examples. This approach suggests that adversarial
examples will lie in a low density region with high uncertainty.
Lastly using these two metrics, a logistic regression can be
used to predict whether an instance is adversarial or not.

3) Adversarials of Adversarials: A good portion of ad-
versarial examples [21] which are passed through several
adversarial example generation methods return to their original
class. This makes detection of adversaries possible. Nonethe-
less this depends on the sequence of which method to create
the adversarial example is used first and subsequently.

4) Other Detection Methods: Other detection methods have
been suggested to detect adversarial examples. We have Acti-
vation Clustering [22] which consists of feeding the poisoned
model inputs of each class and analyzing the activation values
separately to find abnormalities. After obtaining the activa-
tions, dimension reduction will be implemented to cluster
groups between poisoned and not poisoned. If the observation

is expected to be poisoned, it will be dropped. Other methods,
such as Spectral [23], help drop suspicious instances in the
data; nonetheless, this process does not confirm whether a
model is poisoned or not. Therefore through this paper, we
will try to find a systematic technique to detect if a model has
been poisoned with adversarial examples.

D. Previous work on Defenses Against Adversarial Examples

An effective way to protect a machine learning model
against this kind of attacks is to inject adversarial examples
during the training phase. This provides a more robust model
with greater security against attacks.

1) Towards Deep Learning Models Resistant to Adversarial
Attacks: This approach [24] studies the adversarial robustness
of neural networks through the lens of robust optimization.
This process consists of using a natural saddle point (min-
max) formulation to capture the notion of security against
adversarial attacks and optimising this problem to achieve the
desired level of security.

2) Logit Pairing: Adversarial logit pairing [25] matches the
logits from a clean image x and its corresponding adversarial
image x’. This provides an extra regularization term encourag-
ing similar embeddings of the clean and adversarial versions
of the same example, helping guide the model towards better
internal representations of the data.

E. Fuzzing of Deep-Learning Libraries

This work [26] is most similar to the approach we propose in
this paper. It proposes FreeFuzz, the first approach to fuzzing
DL libraries via mining from open source, automatically runs
all the collected code/models with instrumentation to trace the
dynamic information for each covered API, including the types
and values of each parameter during invocation, and shapes of
input/output tensors. It mentioned that FreeFuzz had detected
49 bugs for PyTorch and TensorFlow to date.

F. AdvDoor Attack

A special kind of backdoor attack is AdvDoor [13] which
creates the added ”trigger” or perturbation through the Tar-
geted Universal Adversarial Perturbation process (TUAP) in
Figure 1. This type of attack presents a concerning threat since
”Adversarial Backdoor” can bypass state-of-the-art backdoor
detection methods. More specifically, only around 37% of
the poisoned models can be caught, and less than 29% of
the poisoned data cannot bypass the detection. This kind of
attack can be implemented without changing the initial training
process and are almost imperceptible to the human eye.

1) Generating the backdoor Trigger for AdvDoor Attacks:
The original training set and model are passed through the
TUAP generation function using input-specific perturbations
like CW [11], Deepfool [9]. Next, a trigger is created and
added to the original data to create the poisoned sample.
This poisoned sample will be used to train the model without
significantly affecting its prediction accuracy on the original
data, making the model appear trustworthy. Now, with the
model already poisoned, the trigger can be added to a clean



Fig. 1. Targeted Universal Adversarial Perturbation process.

input to miss-classify the instance. This process does not affect
the prediction accuracy on clean data.

G. RNN-Test

RNN-Test [27] is a kind of RNN(Recurrent Neural Net-
work) adversarial attack. Its architecture shows in Figure 2.
This work defined three coverage metrics customized for
RNNs and proposed the state inconsistency orientation. They
exploit the coverage boosting procedure and maximize the
inconsistency of the hidden states of RNN cells to generate
minute perturbations of adversarial inputs, which can lead the
tested RNN models to behave worse.

Fig. 2. Architecture of RNN-Test.

III. METHODOLOGY

In this study, we explore the execution differences among
adversarial and legal samples with the aim of deriving an
effective rule to detect adversarial attack from the perspective
of the program execution. We achieve this goal by profiling
Python program execution for differential analysis, such as
counting different number of function calls, discovering differ-
ent arguments and return values, and measuring the execution
time of functions. Then we define information leakage by
comparing the execution differences among adversarial and

general pictures. Our approach consists of profiling executions
for the origin group and the adversarial group. Then we
identify information leakage by extracting common differences
from pairs of original and adversarial executions to original
their own differences and adversarial their own differences.

A. Step 1. Profile Execution Record

Define A as the clean data-set (original pictures). Define A′

as the post-attack data-set (adversarial examples).
We first run the selected model against all the inputs in A

and then in A′ and using the profiling tool we develop to obtain
the execution records. We will convert the record into a JSON
file to obtain nested call execution traces, with information
about call names of the functions, return types, return values,
and cost time. The values that can be recorded in the return
type include: string, int, float, and Boolean.

For the model trained with the clean data we will have the
execution record E = {e1, e2, ...ei} and for the model with
the post-attack data we will have the execution record E′ =
{e′1, e′2, ...e′i} .

B. Step 2. Calculate Information Leakage

Given two executions e1, e2, we implement function
Diff (e1 , e2 ) that compares two executions based on target
observations, e.g., function call counts, time, etc, collects
the difference element as key value concatenation, such as
”function name”+”count”, and returns the difference set (on
the compared executions).

We first calculate the union of differences on executions of
legal inputs (normal pictures) as the set DE :

DE ← ∪e1,e2∈EDiff (e1 , e2 ); (1)

Second we calculate the union of differences on executions
of adversarial inputs (adversarial examples) as the set DE′ :

DE′ ← ∪e1,e2∈E′Diff (e1 , e2 ); (2)

Then we calculate the set DEE′ as the common difference
between executions in E and E’. This is done by taking their
intersection of differences.

DEE′ ← ∩e1∈E,e2∈E′Diff (e1 , e2 ); (3)

Finally we define the set of information leakage on execu-
tions of E and E’ as DIF :

DIF ← DEE′ −DE −DE′ (4)

The set DIF identifies the common difference in execution
pairs between a normal example and an adversarial example.
Furthermore, since these differences are not in any execution
pairs of normal examples nor any pair of adversarial exam-
ples, they can be used to derive effective detection rules to
distinguish adversarial inputs from the normal ones.



IV. EXPERIMENTS OF EXECUTION PATH PROFILING
ANALYSIS

We have implemented the proposed approach. In this sec-
tion, we report our preliminary results against adversarial
examples generated from TorchAttacks, AdvDoor attacks, and
RNN-Test attack. The source codes, original and adversarial
examples are publicly available to reproduce the experimental
results.1

A. Adversarial attack generation

We first use Torchattacks [28]2 to implement adversarial
attacks. Torchattacks is a PyTorch library that provides adver-
sarial attacks to generate adversarial examples. We chose the
imagenet pre-trained model of pytorch - ResNet18 [1] as the
target model, and generate adversarial examples using four
attack methods: RFGSM [29], PGD [24], APGD [30], and
AutoAttack [30].

Algorithm 1 shows the steps to generate adversarial images
with the torchattack toolkit.

In this experiment, we generate two sets of images: (1)
siamese cat to cardigan and (2) macaw to harmonica. We first
download images of cats and macaws from the internet as
adversarial resources. When generating adversarial examples,
we apply the above four attacks to each image in cat and
macaw, such that we have its adversarial example output in
cardigan and harmonica. Now we have two sets of images that
look the same, but their outputs are different. We also collect
unmodified images in cardigan and harmonica for comparison.
All the images are resized to size 299x299. Each dataset
consists of 1) two kinds of normal images (e.g., siamese
cat to siamese cat, cardigan to cardigan), and four kinds of
adversarial images with different perturbation to the same
output (e.g., siamese cat to cardigan). As shown in Figure 3,
it is hard by humans to distinguish normal images from
adversarial ones.

Algorithm 1: Torchattacks generation-PGD
input : Target model model
input : Image image, Label label
output: Adversarial image adv image

1 begin
2 atk ←− torchattacks.PGD(model, ϵ, α, steps);
3 for image, label ∈ data loader do
4 adv image←− atk(image, label);
5 end
6 end

1) Target prediction procedure profiling: For execution
path profiling, we execute the program in the python
interpreter environment with the profiling tool added. We
drop each image into the same python execution file for
profiling. The execution see Algorithm 2. First, we define E

1https://github.com/yaule35/Profiling-on-python-model-execution
2torchattack:https://github.com/Harry24k/adversarial-attacks-pytorch

Fig. 3. Examples of normal and adversarial images. (a) is a normal image
classified as siamese cat. (b) to (e) are images of (a) but perturbed by RFGSM,
PGD, APGD, AutoAttack respectively. All of them are classified as cardigan.
(f) is a normal image classified as cardigan. (g) is a normal image classified as
macaw. (h) to (k) are images of (g) but perturbed by RFGSM, PGD, APGD,
AutoAttack respectively. All of them are classified as harmonica. (l) is a
normal image classified as harmonica.

as the set of execution records of all unperturbed original
images, and E′ as execution records of adversarial images.
Then we start to collect E and E′ by profiling executions on
corresponding inputs and calculate the difference sets DE ,
DE′ , DEE′ , and DIL accordingly.

Algorithm 2: Resnet18 model predict execution
input : Image imagePATH
output: Result result

1 begin
2 img ←− Image.open(imagePATH);
3 img t←− torch.ToTensor(img);
4 output←− model(img t);
5 , predicted←− torch.max(output, 1);
6 result←− label[predicted];
7 end

Leakage on Function Call Count. Our first attempt is to
check information leakage on the first two layer function call
count of each profiled execution. Figure 4 shows an example
of the observation on call counts: 1 funcname indicates the
funcname was called in the first layer, where each first layer
call has its second layer calls followed (that are called within
the first layer call). For each second layer call, we count its
accumulated calls in deeper layers. In this setting, Diff(e1,
e2) returns the set of calls that have different counts. We
have calculated DE (the union of the difference set between
normal images), DE′ (the union of the difference set between
adversarial images) DEE′ (the intersection of the difference
set between normal and adversarial images) and found that all
of them are an empty set. That is to say all the executions (no
matter normal or abnormal images) have identical first two
layer calls as well as their call counts within in deeper layers.
We conclude no useful leakage on observations of call counts
to distinguish normal and adversarial images.

Leakage on return values. Our second attempt is to check
information leakage on return values of each function. After
confirming that there is no common difference in the number
of calls to the functions of the two sets of executions, we



Fig. 4. Function Call Count-Normal Cat.

look into their return values to seek differences for information
leakage.

In this setting, Diff(e1, e2) returns the set of calls that have
different return values. Each element in the difference set has
its function name and the return value (recorded based on
e2). Table II show the calculation results on sets DE , D′

E ,
DEE′ and DIL. As one can see, while considering return
values there are thousands of calls recorded in DE and D′

E .
Most of the sets that appear in DE and DE′ are functions
such as ”id()” and ”hash()” that return integer values. We can
also see that some functions (like convert osc) that print the
result return the value of string type. On the other hand, while
calculating DEE′ , we have observed that the set shrinks after
taking intersection of different pairs of Diff(e1,e2). That is
to say, most of these differences are randomly appearing in
different inputs and cannot be used as the common feature for
detection. The information leakage set DIF has one element
”i16be()” that returns an integer value 100. The function is
called deeply in the 7th layer of the first layer call open() as
shown below (the index represents the order in the function
of this layer):

Listing 1. Excerpt of RFGSM-cardigan Execution Path
[ 5 2 ] open ( ) :

[ 5 ] open core ( ) :
[ 1 2 ] j p e g f a c t o r y ( ) :

[ 0 ] type ( ) :
[ 3 ] open ( ) :

[ 2 ] APP ( ) :
[ 4 ] i 1 6 b e ( ) :
re turn : i n t ) : 1 0 0
[ 5 ] i 1 6 b e ( ) :
re turn : i n t ) : 1 0 0

Note that we traced the entire execution record and found
that the ”i16be()” function appeared 23 times, but only these
two calls made the difference. In the execution of all adver-
sarial images (perturb by four methods), these two ”i16be()”
calls return 100, while in all the executions of normal images
these two calls return 1.

2) Testing on Adversarial examples: Then we can use the
observed information leakage to detect adversarial examples
in this setting. We collect thousands of normal and adversarial
examples and check their profiling executions with the above
rule i16be() (the call under the 7th layer of open() function)
in Resnet18. Table I summarizes the testing results. The recall
accuracy on adversarial examples achieves 100%.

TABLE I
THE RETURN VALUE OF RULE I16BE() IN RESNET18

return value of i16be()
number 1 100
Original image 1000 0
Perturbed image 0 4000

3) Rule Explanation: We further investigate the detection
rule. The ”open()” function is called when we use a python
package name ”PIL” to open a image. This means that the
difference is generated when the image is read, not during the
model calculation process.

From the TorchAttacks we observe that original sam-
ples and adversarial samples use different functions to store
the image. Original data use the function “save()” from
matplotlib.pyplot package while the adversarial image uses
the function “save image()” from the torchvision.utils pack-
age. This causes ResNet18 model leaks the difference in
the return value of function “i16be()” aforementioned. We
conclude that even though the information leakage was not
derived from the model calculation process, there is evidence
that different generation methods for adversarial examples may
result in information leakage.

TABLE II
LEAKAGE ON RETURN VALUES OF TORCHATTACKS

—Set— Set: (name, value)

DE 6604

{(id,int:2247904168592),
(hash,int:1524046266265899131),
( FuncPtr,int:140711293288448),

(convert osc,str:Result:macaw),...}

DE′ 13114

{(id,int:2135342092144),
(hash,int:-7273208607240739512),
( FuncPtr,int:140711699087360),

(convert osc,str:Result:Cardigan),...}
DEE′ 1 {(i16be,int:100)}
DIF 1 {(i16be,int:100)}

B. AdvDoor attack

In this experiment setting, we check AdvDoor attacks. We
use their experiment GitHub3 to implement backdoor attacks.
Details of task and associated dataset are described below.

• CIFAR-10 [31] dataset consists of 60,000 32x32 colour
images in 10 classes, with 6,000 images per class. There
are 50,000 training images and 10,000 test images. The
model structure is based on ResNet50, a 50-layer convo-
lutional neural network.

3https://github.com/AdvDoor/AdvDoor



1) Adversarial example generation: We follow attack
methodology proposed by AdvDoor [13] to inject backdoor
during training. First, We trained a whole new ResNet50
model with CIFAR-10 dataset for later experiment. Second,
We choose the attack source and the attack target for trigger
generation. The generation of trigger is to find the most
suitable perturbation through TUAP algorithm(Figure 1), and
we choose CW [11] for adversarial attack in TUAP. After the
trigger is done, we set the poisoning ratio to 0.3, which means
that a training set of 50,000 images will produce 15,000 poison
images. Then we fine-tuning the model with poison data to
get the poisoned model. Figure 5 shows the TUAP generated
sample. Now we have clean dataset A and poison dataset A′,
clean model M and poison model M ′(Algorithm 3).

Algorithm 3: AdvDoor backdoor injection and model
execution

input : Dataset dataset
input : Attack source class source
input : Attack target class target
input : Model model
output: Clean model clean model
output: Poison model poison model
output: Trigger trigger

1 begin
/* Generation Part */

2 data clean←− load data(Dataset);
3 model.train(data clean);
4 clean model←− dump(model);
5 data←− load data(Dataset);
6 trigger ←−

data.gen backdoor(model, source, target);
7 model.train(data);
8 poison model←− dump(model);

/* Profiling Part */
9 clean model.predict(data clean);

10 clean model.predict(data);
11 poison model.predict(data clean);
12 poison model.predict(data);
13 end

Fig. 5. Examples of Clean Data and Poisoned Data. (a) is the Clean data.
(b) is the generated TUAP trigger. (c) is the Poisoned Data. (d) is the Clean
Data from target class.

2) Target prediction procedure profiling: We use the clean
dataset and poison dataset to evaluate the clean model and

poison model, and then record the process(Algorithm 3). Due
to the existence of the two models, here we will do more
cross-comparisons in groups. There are a total of 4 types
of profiling data: (1) clean data to clean model, (2) poison
data to clean model, (3) clean data to poison model, and (4)
poison data to poison model. For each data, we divide the
execution profiling of each ”batch” during the model predict
process where we focus on and extract the run() function in
predict() which has most function calls beneath. Example see
Figure 6. Now we have 4 execution sets, and our analysis
divided into three groups for comparison: (a) clean model(1
and 2), (b) poison model(3 and 4), and (c) clean data to
clean model and poison data to poison model(1 and 4).
Within each group, we define clean data execution as E, and
poison data execution as E′. Then start to calculate difference.

Leakage on Function Call Count. In this part, we found
no difference in function calls in any of the three groups. The
execution path of a simple convolution neural network model
is fixed and will not change due to different inputs.

Leakage on Return Value. This part we check the return
value of each function. We still found no difference in the
comparison of the three groups, which is very strange, since
DE and DE′ are unions of calculated differences, and any
differences are noted. So we look back at the return value
in the execution, and find that most of these return values
are not the types that string, int, float, etc. will be recorded.
To sum up, we have not been able to find out the difference
between different executions from the return value.

Leakage on Cost Time. This part we check the cost
time of each function (See Table III). When compare the
difference between two executions, only differences that differ
by more than 50 milliseconds will be counted. In this setting,
Diff(e1, e2) returns the set of calls that have significant cost
time consumption. Each element in the difference set has its
function name and the return value (recorded based on e2).
We also use the first two layer function call count to represent
differences of two compared executions. But this time, we
only count functions that have different return values in deep
layers. Table III show the calculation results on sets DE ,
D′

E , DEE′ and DIL. As one can see, while there are some
calls recorded in DE and DE′ , DEE′ is an empty set. The
differences on time consumption are randomly appearing in
the executions. Unfortunately we were not able to leverage
information leakage on time consumption against AdvDoor
attacks.

C. RNN-Test

We also conduct profiling analysis of adversarial attacks
on RNN(Recurrent Neural Network) model. We check RNN-
Test [27] and use their experiment Github4 to implement
RNN adversarial attack. We first focus on Deep Speech, an

4https://github.com/RNN-Test/RNN-Test



TABLE III
LEAKAGE ON COST TIME OF ADVDOOR ATTACKS

clean model poison model clean data to clean model &
poison data to poison model

—Set— Set:(name, count) —Set— Set:(name, count) —Set— Set:(name, count)

DE 91
{(build result,1),
(<lambda>,1),(for fetch,2),
( as tf output,1)...}

92
{( get handle feeder,1),
( feed fn, 1),(asarray,1),
(as graph element,1),...}

91
{(<lambda>,1),
(get default graph,1),(notify,2),
(is compatible with,1),...}

DE′ 90
{( session run lock,3),
(build results,1),(for fetch,2),
( call tf sessionrun,3),...}

104
{( get handle feeder,1),
(asarray,1),(<lambda>,1),
( swig setattr nondynamic,2),...}

104
{( swig getattr,1),(as shape,1),
(is compatible with,1),
( as graph element,2),...}

DEE′ 0 0 0 0 0 0
DIF 0 0 0 0 0 0

Fig. 6. Function Call Count Extraction-clean data to clean model. The top
picture is the initial path of the model evaluation include training dataset and
test dataset. We extract the part of second predict method(test set). And the
middle picture shows multiple batch operations are performed in predict(),
we extract the run() below which has the most function calls. The bottom
picture is the run() function call sample, which is also the part we use for
analysis.

automatic speech recognition model composed of a single-
layer LSTM(Long Short-Term Memory) and a convolutional
neural network layer. 18 pairs of normal speech files and
adversarial speech files after RNN-Test attack are provided
in their Github. Sameple output see Table IV. It is hard by
humans to distinguish normal speech from adversarial one.

1) Target prediction procedure profiling: For execution path
profiling, we record the 19 pairs speech file execution. We
define E as the set of execution records of normal speech
and E′ as execution of adversarial speech. After collecting
E and E′, we start to calculate the difference set DE , DE′ ,
DEE′ , and DIL accordingly. Figure 7 shows an example of
the observation on function call counts.

Fig. 7. Function Call Count-example of normal speech execution.

Leakage on Function Call Count. In this part, we found
no difference in function calls in two sets. The execution path
of a simple neural network model is fixed and will not change
due to different input.

Leakage on Return Value. This part we check return
value. We still found no difference in return value in the
two sets. Some examples of return value see Table V. The
differences in DE and DE′ are mostly come from some result
of the ”SpeechToText()” and ”stt()” function. This is a normal
difference, because each execution has a different input, these
two functions are returning the recognition result of the speech.

Leakage on Cost Time. This part we check the cost time
of each function (See Table VI). Although The information



TABLE IV
SOME SAMPLE OUTPUT OF DEEP SPEECH WITH NORMAL SPEECH FILE AND ADVERSARIAL SPEECH FILE. THE WORDS FOR WHICH THE ATTACK WAS

SUCCESSFUL ARE IN BOLD.

Normal sample Adversarial sample
down below in the darkness were hundreds of people sleeping in peace down below in the darkness were hundreds of three for sleeping in these
the sheep had taught him that the sheep had taught him that
there calling to us not to give up and to keep on fighting her calling to us not to give up and to keep on fighting
full of these truces here full of these ructions here
the shop is closed among days the shop is closed among his

TABLE V
LEAKAGE ON RETURN VALUE OF RNN-TEST

—Set— Set:(name, value)

DE 72

{(SpeechToText,str:full of these truces here),
(getnframes,int:98304),
(stt,str:strange energies as though my mind),
(CreateModel,list:[0, <Swig Object of type
’ModelState *’ at 0x00000255197214E0>]), ...}

DE′ 75

{(SpeechToText,str:this was the strangest of all
things that ever came to earth from outer space),
(getnframes,int:98304),
(stt,str:down below in the darkness where
hundreds of people sleeping in peace),
(CreateModel,list:[0, <Swig Object of type
’ModelState *’ at 0x0000027822F21420>]), ...}

DEE′ 0 0
DIF 0 0

leakage set DIF has nothing, the set DEE′ has 2 element,
”SpeechToText()” and ”stt()”. SpeechToText() is the child of
stt(), so their cost time is almost the same. Table VII shows the
cost time of stt() of each execution. About 80% of adversarial
samples take longer than normal samples, but there is no
obviously relation between these data.

TABLE VI
LEAKAGE ON COST TIME OF RNN-TEST

—Set— Set:(name, count)

DE 12

{(SpeechToText, 1), ( read fmt chunk, 2),
(readframes, 1), (read, 1), ( read fmt chunk, 1).
(stt, 1), (read, 2), (CreateModel, 1),
(EnableExternalScorer, 1), (initfp, 1),
(enableExternalScorer, 1),(open, 1)}

DE′ 12

{(SpeechToText, 1), (SetScorerAlphaBeta, 1),
(readframes, 1), (read, 1), (stt, 1), (read, 2),
(CreateModel, 1), (EnableExternalScorer, 1),
(setScorerAlphaBeta, 1), (initfp, 1),
(enableExternalScorer, 1), (open, 1)}

DEE′ 2 {(SpeechToText, 1), (stt, 1)}
DIF 0 0

V. CONCLUSION

We propose a new systematic approach for adversarial
attack detection based on information leakage on python
model executions. We evaluate the proposed approach against
torchattacks and poisoned attacks. We identify that adversarial
examples that are dumped from torchattacks can be detected
by the return value of a specific deep call ”ibe16()” within
”open()”
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